DOSY NMR Theory and Practice

Rebecca Spicer

William Grantham and Dr David August

What is DOSY NMR?

Diffusion Ordered SpectroscopY

Can be used to differentiate between species of varying sizes in the same spectrum.

1D, 2D or 3D NMR Technique

How does it work?

 Pulsed Field Gradients Dephasing Refocussing pulse pulse Net No net signal signal

How does it work?

• The effect of diffusion: Refocussing Dephasing pulse Diffusion pulse Overall signal Net reduced by diffusion signal

What is measured?

Normally the gradient field strength is increased over 16 increments

Gaussian Distribution

 The peak intensities can be fitted to a Gaussian decay to give the diffusion coefficient (D)

Diffusion Coefficient

Stokes-Einstein Equation

Assuming the molecule is **spherical** in shape:

$$D = \frac{k_B T}{6\pi \eta r_s}$$

Where:

- D = Diffusion Coefficient ($m^2 s^{-1}$ but often given in $cm^2 s^{-1}$)
- $k_{\rm B}$ = Boltzmann Constant (1.4 × 10⁻²³ m² kg s⁻² K⁻¹)
- T = Temperature (K, usually 300 K in Edinburgh's NMR spectrometers)
- η = Viscosity (Pa s = kg s⁻¹ m⁻¹ but often given in mPa s)
- r_s = Hydrodynamic radius of the molecule (m)

Hydrodynamic Radius

- The Stokes-Einstein equation assumes perfect spheres that are larger than solvent molecules
 - Large non-spherical compounds diffuse slower
 - Very small compounds diffuse faster
- Radius of the compounds includes solvation sphere
 - Different solvents will give different values
 - Different solvents will have different interactions

Hydrodynamic Radius (r_s)

Calculating hydrodynamic radius

Can calculate the hydrodynamic radius using Einstein-Stokes equation:

Resorcin[4]arene

 $D = \frac{k_{\rm B}T}{6\pi\eta r_{\rm s}}$

Which rearranges to:

$$r_{\rm s} = \frac{k_{\rm B}T}{6\pi\eta D}$$

Where:

$$k_{\rm B} = 1.4 \times 10^{-23} \,\text{J K}^{-1}$$

 $T = 300 \,\text{K}$
 $\eta = 0.58 \,\text{mPa s}$
 $D = 2.47 \times 10^{-6} \,\text{cm}^2 \,\text{s}^{-1}$

Therefore:

$$r_s = \frac{1.4 \times 10^{-23} \times 300}{6\pi \times 0.58 \times 10^{-3} \times 2.47 \times 10^{-10}}$$

= 15.4 Å

20 mM in *d*-Chloroform

Open the "ser" file

Advanced > DOSY Transform...

Generally, the default settings should work well

Resolution factor:

Start at 1

Repetitions:

• Start at 1

Try to avoid increasing these too much – may lead to artefact peaks

Minimum/maximum:

Range of diffusion coefficient to be processed for

Points in diffusion dimension:

- Increasing may lead to a better resolved spectrum but will be computationally more expensive – Edinburgh's DOSYs have 512 points
 - Use 128, 256 or 512

Processed data

Showing the vertical trace

Identification of mixtures

Four different sized species present in the spectrum

Identification of mixtures

Four different sized species present in the spectrum

Identification of mixtures

Can abstract ¹H NMR spectra from DOSY plot

Abstracting spectra (using MestReNova)

• Can select peaks correlating to individual diffusion coefficients

Abstracting spectra (using MestReNova)

Can select peaks correlating to individual diffusion coefficients

Abstracting spectra (using MestReNova)

Can select peaks correlating to individual diffusion coefficients

Abstract vertical trace

Practical Considerations

- Concentration
- Convection
- Overlapping peaks
 - Programs

Concentration

- Use roughly 10 mM minimum
 - · Weaker samples are undetectable or cause artefact peaks during processing
- Longer experiments are available with more field strength increments
 - Ava500 preferential for ¹H DOSY over Ava600 and Ava400
 - 128 increments (2 h 20 min night DOSY) instead of 16 (20 min day DOSY)

Convection

- Convection currents can disrupt diffusion
 - Use the lowest volume required
 - Use thick walled NMR tubes
- Very minimal at room temperature
 - Unless using low boiling solvent
 - Need to consider for higher/variable temperature (VT) experiments

Overlapping Peaks

• Difficult to solve multi-exponential decay

Overlapping Peaks

Difficult to solve multi-exponential decay

Overlapping Peaks

- Multi-exponential fitting functions are available
- Can vary the different parameters to see if it improves resolution
- Pureshift-DOSY
 - Time consuming and has sensitivity issues

Processing

- Multiple programs are available
 - MestReNova
 - Topspin
 - Dynamic Centre
 - DOSY Toolbox

Applications

- Identification of mixtures
 - Crude reaction mixtures
- Supramolecular interactions
 - Dimerisation processes
 - Self-assembly processes

Vicente Marti Centelles

Application: Effect of solvent on hydrodynamic radius

Can calculate the hydrodynamic radius using Einstein-Stokes equation:

Resorcin[4]arene 20 mM

formation of resorcin[4] arene hexamer in solution

Disrupts hydrogen bonding – monomeric resorcin[4]arene in solution

0.32

8.7

Automation

• These experiments are all set up in automation and generally give good results.

¹H DOSY NMR Use Ava500 ¹⁹F DOSY NMR Use Pro500

C DOSY 1H DOSY (16) 20 min day C DOSY.long 1 H DOSY (128) 2 h 20 min night C DOSY 19F DOSY (120) 2h night

But if the results are bad **just ask** and the parameters can be adjusted!

Useful Review Article

Pulsed-field gradient nuclear magnetic resonance measurements (PFG NMR) for diffusion ordered spectroscopy (DOSY) mapping

Analyst, 2017, 142, 3771-3796

Thank you for listening!