Anisotropic Interactions and High-Resolution NMR in Solids

Dr Daniel Dawson University of St Andrews dmd7@st-andrews.ac.uk

Overview

- · Quick reminder of NMR theory from yesterday
- Introduction to anisotropy and why it matters
- · The effects of anisotropic interactions
- Removing anisotropic interactions in solids

"NMR in a Nutshell" in a Nutshell

- Magnetically-active nuclei interact with a magnetic field to give an NMR signal (intensity, frequency).
- Electrons interact with external magnetic fields to create small internal magnetic fields.
- When we look at nuclei surrounded by electrons (i.e., stuff), the exact resonance frequency depends on where the electrons are (i.e., chemistry).
- NMR spectroscopy can be used to probe of structure, connectivity and 3D conformation.

1. Anisotropic Interactions in NMR

Anisotropy

• "Anisotropic" means "not the same in all directions" and applies to many molecules.

- We expect a different magnetic response, i.e., shift, for the same ¹³C nucleus at the same B₀ strength depending on the molecular orientation.
- So why do we see sharp lines in solution for this anisotropic molecule?

Liquids vs Solids

- In liquids, molecules tend to tumble rapidly compared to the Larmor frequency.
 - τ_C around 10^{-12} s (small molecules) to 10^{-7} s (biomolecules)
 - $1/v_0$ around 10^{-9} s (1 GHz) to 10^{-8} s (100 MHz)
- Over the course of one nuclear oscillation, there is no memory of molecular orientation.
 - Caveat: this isn't always true for biomolecules, which have longer τ_C and may behave more like small solid
 particles under certain conditions.
- In a typical solid, motion is (nearly) absent owing to molecular packing, rigid ionic lattice potentials, etc., so it matters which way up your crystallite is.

Some Maths, Unfortunately

• We have seen chemical shifts reported as δ , but this is the orientation-averaged isotropic value. In solids, we must represent the chemical shift as an interaction tensor.

lab frame

$$\delta^{lab} = \begin{pmatrix} \delta_{xx} & \delta_{xy} & \delta_{xz} \\ \delta_{yx} & \delta_{yy} & \delta_{yz} \\ \delta_{zx} & \delta_{zy} & \delta_{zz} \end{pmatrix}$$

rotation transform between frames

interaction frame

 $\left|\delta_{\text{ZZ}} - \delta_{\text{iso}}\right| \! \geq \! \left|\delta_{\text{XX}} - \delta_{\text{iso}}\right| \! \geq \! \left|\delta_{\text{YY}} - \delta_{\text{iso}}\right|$

axes fixed relative to the interaction arbitrary relative orientation of B₀

Some Maths, Unfortunately

• All shifts must be between δ_{ZZ} and $\delta_{\text{XX}},$ and are distributed according to:

$$\frac{\delta}{\delta} = \delta_{iso} + \frac{\Delta_{CS}}{2} \left[\left(3\cos^2 \theta - 1 \right) + \eta_{CS} \left(\sin^2 \theta \cos 2\phi \right) \right]$$

orientation independent

orientation dependent

axes fixed relative to the lab (and ${\rm B_0}$) arbitrary orientation of the molecule

The Problem with Anisotropy

• Having a spectrum where we can identify all three components of the shift tensor gives us more information than the average δ_{iso} from solution, and more information is good, right?

• Broad signals are a problem when we have multiple resonances in the spectrum (*i.e.*, in most materials of interest).

Dipolar Couplings

 Nuclear spins generate a magnetic dipole, which can interact directly with other nuclear dipole moments through space.

$$\omega_{D} = \frac{\omega_{D}^{PAS} \left(3\cos^{2}\theta - 1\right)}{2}$$

$$\omega_{D}^{PAS} = -\frac{\mu_0 \gamma_1 \gamma_S \hbar}{4 \tau_{IS}^3}$$

$$D = \begin{pmatrix} +D & 0 & 0 \\ 0 & -D/2 & 0 \\ 0 & 0 & -D/2 \end{pmatrix}$$

Other Anisotropic Interactions

• If the molecule is anisotropic, all interactions present will be anisotropic.

Interaction	Size	Liquids	Solids
Zeeman	10 ⁷ – 10 ⁹ Hz	yes	yes
RF pulses	10 ³ – 10 ⁵ Hz	yes	yes
chemical shift	10⁴ – 10⁵ Hz	isotropic	anisotropic
J coupling	1 – 10 ³ Hz	isotropic	aniostropic
dipolar coupling	10 ³ – 10 ⁵ Hz	no	anisotropic
quadrupolar coupling	10 ³ – 10 ⁷ Hz	no	anisotropic

Quadrupolar Nuclei

 Nuclei with spin I > 1/2 have a nuclear electric quadrupole moment Q, which interacts with an electric field gradient, V.

$$\mathbf{V}^{\text{PAS}} = \begin{pmatrix} V_{xx} & 0 & 0 \\ 0 & V_{yy} & 0 \\ 0 & 0 & V_{zz} \end{pmatrix}$$

$$|\mathsf{V}_{\mathsf{z}\mathsf{z}}| \geq |\mathsf{V}_{\mathsf{x}\mathsf{x}}| \geq |\mathsf{V}_{\mathsf{y}\mathsf{y}}|$$

$$v_{Q}^{PAS} = \frac{3C_{Q}}{4I(2I-1)}$$

$$C_{Q} = \frac{eQV_{zz}}{h}$$

$$\eta_{Q} = \frac{\left(V_{xx} - V_{yy}\right)}{V_{zz}}$$

$$P_{Q} = C_{Q} \left(1 + \frac{\eta_{Q}^{2}}{3} \right)^{1/2}$$

Nuclei with Integer Spins

- · Only seven natural NMR-active nuclei have integer spins.
- I = 1: 2H, 6Li, 14N
- I = 3: 10B
- I = 5: 138La
- I = 6: 50V
- I = 7 ¹⁷⁶Lu
- All exhibit combinations of very unfavourable properties.
 - · Low abundance, low receptivity, large quadrupolar coupling...
- · Can still be used to provide information.
 - · More on that later.

Quadrupolar Nuclei: I = 3/2

 For half-integer spins the Central Transition (CT) is unaffected by the first order transition.

Quadrupolar Nuclei: I = 1

- For I = 1, three allowed Zeeman states give two allowed transitions.
- These are degenerate when V_{zz} = 0 but the quadrupolar interaction perturbs these energy levels, normally only to first order.

$$v_{_{\mathrm{Q}}} = v_{_{\mathrm{Q}}}^{\mathsf{PAS}} \frac{1}{2} \Big[\Big(3 \mathsf{cos}^2 \theta - 1 \Big) + \eta_{_{\mathrm{Q}}} \Big(\mathsf{sin}^2 \theta \mathsf{cos} 2 \phi \Big) \Big]$$

Two transitions observed in the spectrum.

Quadrupolar Nuclei: I = 3/2

• The quadrupolar frequency has a complicated orientation dependence:

$$v_{Q} = \frac{\left(v_{Q}^{PAS}\right)^{2}}{v_{0}} \left[A + Bd_{00}^{2}(\theta) + Cd_{00}^{4}(\theta)\right]$$

A: isotropic

B: first-order

 $d_{00}^2\left(\theta\right) \propto 3\cos^2\!\theta - 1$

C: second-order

 $d_{00}^4(\theta) \propto 35\cos^4\theta - 30\cos^2\theta + 3$

Solid-State NMR: The Problem

- Typically, the width of lines in solid-state NMR spectra is greater than their separation.
- · Peaks overlap and the signal is typically spread out over hundreds of ppm.

- The result is broad, featureless spectra that look like they contain no useful information.
- · They actually contain too much information!
 - Chemistry, crystal and local symmetry, distances, bonds...

Magic Angle Spinning

- Remember that most anisotropic contributions are proportional to (3cos²θ –1) / 2.
- This is zero at the "magic" angle of 54.736°.
- If we could align all crystallites at the magic angle, we would get an isotropic spectrum.
 - · This is not practical...

- If we could, instead, achieve an average crystallite orientation of the magic angle, we
 would still see the isotropic spectrum.
- Rapid isotropic tumbling is why solution state NMR spectra have such high resolution.

2. Improving Resolution and Sensitivity

Magic Angle Spinning

 In the magic angle spinning (MAS) experiment, the randomly oriented crystallites are packed into a rotor oriented at the magic angle.

Magic Angle Spinning

- Rapid rotation averages off-axis contributions to the crystallite orientation to zero, giving an orientation of 54.736°.
- The maximum rotation rate is limited by the speed of sound over the outer wall of the rotor.
- Smaller rotors can rotate faster, but hold less sample.
- Trade off between sensitivity (number of nuclei present) and resolution (MAS rate needed).

- MAS works very well provided the rotation rate exceeds the broadening you are trying to remove.
- At "slow" MAS rates, spinning sidebands are observed.
- SSBs are still sharp and can provide information on anisotropic interactions (provided the manifolds from different resonances don't overlap).
- For some nuclei, (particularly ¹H and ¹⁹F), the homonuclear dipolar coupling still causes broad SSBs up to ~100 kHz MAS.

Decoupling

As in solution NMR, decoupling can remove the effects of spin-spin interactions (dipolar and J).

1[13C]-glycine

10.9 kHz

CSA is not removed (single-spin involved)

Unlike solution-state NMR, 38 Hz counts as a narrow line!

MAS and Quadrupolar Nuclei

- The second-order quadrupolar perturbation has a orientation dependence with roots at 30.56° and 70.12°.
- Reduced to ~1/3 by MAS but not removed entirely.
- Could be removed by spinning at 30.56° (or 70.12°).
- The Double Orientation Rotation (DOR) experiment spins the sample simultaneously at 54.74° and 30.56°.
- · Specialist probe required, poor fill factor, top spinning rates ~2 kHz (outer) and ~6 kHz (inner) rotors...

The MQMAS Experiment

- · Multiple-quantum (MQ) MAS has revolutionised high-resolution NMR of quadrupolar nuclei.
- 2D experiment that exploits the different A, B and C coefficients for different transitions.

$$v_{Q} = \frac{\left(v_{Q}^{PAS}\right)^{2}}{v_{0}} \left[A + Bd_{00}^{2}(\theta) + Cd_{00}^{4}(\theta)\right]$$

• Correlates the isotropic MQ spectrum with the conventional MAS spectrum.

on I-S dipolar coupling

- · Individual lineshapes can be extracted to provide δ_{iso} , C_O , η_O .
- · If this is not possible, the centre of gravity can still give δ_{iso} and P_{o} .

Cross Polarisation

- · Cross polarisation (CP) is a signal enhancement method that transfers magnetisation from a higher γ , more abundant spin I to a lower γ , less abundant spin S.
- Theoretical maximum enhancement of γ₁/γ_S is rarely achieved but improvements of 2-3 are common for ¹H-¹³C. 4-9× time saving
- Increased signal per unit time since higher-γ nuclei typically relax faster (1 s for ¹H, 120 s for ¹³C 10-100× time saving
- A total time saving of a factor of ~hundreds is common.
- CP is used routinely for ¹³C, but the technique is not quantitative and care must be taken when comparing signals from C_{quat} and CH₃ or Si(OSi)₃OH and Si(OSi)₄.

Cross Polarisation

Cross Polarisation

 The non-quantitative nature of CP can be used in "spectral editing" experiments, where a very short contact time is used to only show protonated species.

Other Common Solids Experiments

- · Double-quantum (DQ) MAS is the solid-state equivalent of COSY.
- Spectra look a bit different, since the experiment correlates DQ coherences with the MAS spectrum.

- Pairs of peaks with the same DQ shift correspond to spatially close nuclei.
- Signals on the 2:1 diagonal correspond to pairs of spins with the same shift.
- Isolated spins (e.g., O¹H) may not be observed.
- Many known DQ excitation schemes: BABA, POST-C7, R and C sequences...

Other Common Solids Experiments

 HETCOR, or "HETeronuclear CORrelation" covers a wide range of 2D experiments where chemical shift information from spin I is correlated with chemical shift information of spin S.

 A short contact time is normally used to show only spatially close pairs of nuclei (similar information to HSQC).

Other Common Solids Experiments

- Other sequences such as INEPT and HMQC use the J coupling to transfer magnetisation.
- At least, in theory…

- In reality, there is generally still a contribution from the dipolar coupling and the delay, τ corresponds to an effective coupling of ~100-1000 Hz.
- Active dipolar recoupling pulses can be applied during τ to give a through-space version of the experiments ("D-HMQC" and "D-INEPT").

3. Summary

Summary

- · Interactions in NMR are anisotropic.
 - Molecules are always anisotropic, but rapid isotropic tumbling averages this in liquids.
- · Sometimes anisotropic broadening is useful.
 - Point symmetry/geometry information.
- Most resonances in solids are broadened by multiple anisotropic interactions at once.
 - Broad, featureless, overlapping resonances are generally uninformative despite containing a lot of information!
- MAS can be used to improve resolution for I = 1/2 nuclei but MQMAS is needed for I > 1/2.
- Decoupling can remove spin-spin interactions but can't remove CSA or quadrupolar broadening.
- Most liquids experiments have a solids analogue, but this might look or function a bit differently.

Structure, Disorder and Dynamics - Applications of Solid-State NMR

Dr Daniel Dawson University of St Andrews dmd7@st-andrews.ac.uk

Questions?

Overview

- · Structural information from ordered solids
- · The effects of static disorder
- The effects of dynamics

1. Summary from this Morning

Summary

- · Interactions in NMR are anisotropic.
 - Molecules are always anisotropic, but rapid isotropic tumbling averages this in liquids.
- A lot of solid-state NMR methodology is about improving resolution.
 - Solution-state spectra look nice and we'd like to mimic that!
- · You already have experience of the information available in high-resolution spectra.
 - Chemistry, molecular symmetry, through-bond connectivity, stereochemistry (E/Z alkenes)...
- But anisotropy = information and more information is always good, right?
 - Can we measure anisotropic interactions?
 - Can they tell us anything?
 - Can we selectively observe just one at once?

Anisotropic Interactions in NMR

Interaction	Size	Liquids	Solids
Zeeman	10 ⁷ – 10 ⁹ Hz	yes	yes
RF pulses	10 ³ – 10 ⁵ Hz	yes	yes
chemical shift	10 ⁴ – 10 ⁵ Hz	isotropic	anisotropic
J coupling	1 – 10 ³ Hz	isotropic	aniostropic
dipolar coupling	10 ³ – 10 ⁵ Hz	no	anisotropic
quadrupolar coupling	10 ³ – 10 ⁷ Hz	no	anisotropic

2. Structural Information from Ordered Solids

Measuring Distances

- The Rotational Echo DOuble Resonance (REDOR) experiment is used to measure dipolar couplings.
- Requires isolated spin pairs (often through labelling).
- Two spectra are recorded, a spin echo and a spin echo with 180° pulses applied on the I spin every half rotor period to refocus the dipolar coupling, labelled S₀ and S, respectively.

Measuring Distances

• A plot of $\Delta S/S_0 = (S_0 - S_r)/S_0$ can be fitted to the "universal function", λ , with the only unknown being the internuclear distance.

$$\lambda = N_c T_r D$$

 N_c = number of rotor periods T_r = rotor period

D = dipolar coupling

$$\omega_{D}^{PAS} = -\frac{\mu_0 \gamma_1 \gamma_S \hbar}{4 \pi r_{IS}^3}$$

Example: Crystal Structure of AIPO-5

- Crystallographic refinement suggested an Al-F bond of 2.19 Å in AIPO-5 (prepared in fluoride medium).
- ²⁷Al-¹⁹F REDOR measurements provide a plot of (S₀-S)/S₀ that is more consistent with a bond length of 1.92 Å.
- REDOR can be used to refine structures, as in this
 case or, in cases where a crystal structure doesn't
 exist, structural constraints may be obtained from
 NMR.

J. Phys. Chem B 105, 2001, 12249.

Measuring CSAs

- The CSA can be reintroduced in the second dimension of a CSA-amplified Phase Adjusted Spinning Sidebands (PASS) experiment.
- Other methods are available!
- CSA doesn't always correlate directly with a single structural feature, but has been linked to hydrogen bond length in organics, Mg substitution in MgAPOs, axial Y-O bond length in Y₂(Sn,Ti)₂O₇...

• CSA measurements often have a larger error than δ_{iso} , so work better for large CSAs.

Example: ¹H CSA in Hydrogen Bonds

- Proteins and other large biomolecules are one of the most challenging fields of structural determination.
- Measurement of ¹H CSAs in the CAP-Gly domain of mammalian dynactin shows that principal components of the shift tensor can be used to provide geometry constraints for hydrogen bonds.

J. Am. Chem. Soc. 135, 2013, 1358.

Measuring the Quadrupolar Interaction

• C_Q and η_Q can be obtained from MAS or MQMAS experiments (sometimes at multiple fields).

$$v_{Q} = \frac{\left(v_{Q}^{PAS}\right)^{2}}{v_{0}} \left[A + Bd_{00}^{2}(\theta) + Cd_{00}^{4}(\theta)\right]$$

Provides information on bonding geometry...

Measuring the Quadrupolar Interaction

 C_Q and η_Q can be obtained from MAS or MQMAS experiments (sometimes at multiple fields)

$$v_{Q} = \frac{\left(v_{Q}^{PAS}\right)^{2}}{v_{0}} \left[A + Bd_{00}^{2}(\theta) + Cd_{00}^{4}(\theta)\right]$$

... and deviation from idealised geometry

Wideline NMR

- Sometimes C_Q is so large that MAS is not a practical option.
- Wideline methods such as broadband pulses (WURST, HS, etc.), sensitivity enhancement such as CPMG, and Variable-Offset-Cumulative Spectroscopy (VOCS) can be combined to record the whole spectrum.
- For example, ⁶³Cu in a Cu(I)CN/ methylthiourea metal-organic framework has C_O ≈ 82 MHz
 - The CT signal is ~8 MHz wide at 20.0 T!

More on the Chemical Shift

- In a dilute solution of molecules in a solvent, the molecules are indistinguishable by NMR.
- Solids are, of course, slightly more complicated...

 If two molecules are chemically equivalent but symmetrically inequivalent, they cannot be magnetically equivalent.

More on the Chemical Shift

• Sensitivity to crystallographic inequivalence makes NMR a powerful probe of polymorphism.

Example: Siliceous Zeolites

• In certain VERY favourable cases, it is even possible to solve a complete structure from NMR data.

3. Static Disorder

J. Am. Chem. Soc. 127, 2005, 10365.

Types of Disorder

- Solid-state structure is characterised by long-range order or periodicity (fixed lattice points + motifs in an infinitely repeated unit cell).
- Many useful properties come from disorder, i.e., some sort of variation in the ordered structure.
- · Disorder can be classed loosely as:
 - Compositional: doping of different atoms or molecules onto lattice points (also includes vacancies).
 - Positional: spatial deviation of atoms or molecules from their lattice points.
 - Temporal: atomic/molecular positions vary with time.
- In addition, many useful materials are multi-component mixtures (bulk disorder).

ordered material

doped material compositional disorder

glassy material positional disorder

dynamics temporal disorder

Average and Local Structure

 NMR is more sensitive to the local than the long-range structure, which makes it an ideal probe of disorder.

 Peak intensities can be compared to those expected for a random distribution to provide evidence of ordering, clustering or phase separation.

The effects of disorder (I = 1/2)

- · Variation in the local environment changes the chemical shift.
- Significant changes (e.g., coordination number) lead to separate resonances.
- Smaller changes (e.g., next-nearest neighbour occupancy) lead to smaller shift differences, often observed as splittings and shoulders.
- Smaller or longer-range changes may lead to a broadening rather than resolvable signals.
- Less discrete changes (e.g., the continuous variation of bond angles in a glass) lead to a continuum of chemical shifts (i.e., a broadening).
- Disorder-induced broadening cannot be removed by MAS since it results from a distribution of isotropic shifts!

The Effects of Disorder (1 > 1/2)

- Quadrupolar nuclei are affected by variation in the chemical shift and EFG tensors.
 - These often vary together, but not always!

The Effects of Disorder (I > 1/2)

- This variation also affects the appearance of MQMAS spectra
 - a) ordered
 - b) distribution of C_○
 - c) distribution of δ
 - d) distribution of δ and C_{Ω}
- This can lead to complicated lineshapes in real materials!

Example: Aluminosilicate Zeolites

Crystallographic diffraction often can't tell the difference between, e.g., Al/Si, OH/F, OH/H₂O, CH₃/NH₃ when these have no long-range order.

²⁹Si in analcime

- Different signals for tetrahedrally-connected (Q⁴) Si depending on the number of Al neighbours (m).
- ²⁹Si NMR is one of the most common ways to determine the Si/Al ratio of zeolites.

$$\frac{\text{Si}}{\text{Al}} = \frac{\sum_{m} I(Q^{4}(m))}{0.25 \sum_{m} mI(Q^{4}(m))}$$

Example: Polymers

Polymers are inherently difficult to study, but NMR can be used to characterise end groups, backbone conformation and amorphous and crystalline domains.

trifluoroethylene copolymer

- Different domains have different spatial and temporal order so their signals can be separated by relaxation filters.
- Remember that liquids are amorphous and polymer chemists have low standards for "crystalline"!

"Bulk Disorder"

- An extreme form of disorder occurs when one particle is completely different from the next.
 - a synthesis may produce multiple products
 - a molecule may crystallise in multiple polymorphs in the same batch
- Many useful and interesting materials are complex mixtures of complicated compounds.
 - bone, teeth, muscle tissue, wood, soil, car tyres, concrete, oil paintings, food, medicines...
- · NMR is an excellent quantitative, non-destructive technique for characterising the whole sample at once, regardless of crystallinity.
- By combining the element-specificity of NMR with pulse sequences designed to filter signals for couplings. CSAs, relaxation, etc., it is possible to observe individual chemical components of even very complicated materials.
- The sensitivity of NMR is poor, so the limit of detection is quite high, especially for more complicated/insensitive pulse sequences and "difficult" nuclei.

Example: Drug Forms in Tablets

simulated formulation with 5% bambuterol hydrochloride (BHC)

By using pulse sequences designed to filter signals for couplings, CSAs, relaxation, *etc.*, it may be possible to observe individual chemical components of even very complicated materials

Motion and NMR

- You may remember from this morning that motion is important for the appearance of NMR spectra!
- However, between "static" and "isotropic", there are many other options...

3. Dynamic Disorder

The Effects of Motion

Investigating Motion

Example: Fast Li Ion Motion

- Relaxation measurements for ^{6/7}Li in Li ion conductors can be used to determine the activation energy for motional processes.
- These measurements can be used to determine whether the motion is local or bulk and, if bulk, the dimensionality of the pathway (linear, planar or 3D transport).
- Example shows complex local and longrange Li motion in Li₇P₃S₁₁ glass ceramic.

ChemPhysChem 2015 16 5282.

Example: ²H Lineshapes

- Variation in the modulation of the ²H lineshape as a function of temperature is a common method of probing dynamics in the "intermediate" regime.
- Combination of experiment and simulation can extract rate constants and type of motion.
- For example, variable-temperature ²H NMR of perdeuterated Sc₂(BDC)₃ shows that the aromatic rings in the benzene-1,4-dicarboxylate undergo rapid 180° flipping at elevated temperatures.

Inorg. Chem. 2011 50 10844.

Example: Guest Dynamics in MOF-74

- Other anisotropic interactions can be used similarly.
- Two possible behaviours for CO₂ in Mg-MOF-74:
 - Uniaxial rotation around Mg-O bond.
 - Hopping from one Mg site to another.
- ¹³C CSA measurements, combined with modelling, show that only uniaxial rotation occurs at low temperatures, but hopping occurs simultaneously at elevated temperatures.

Angew. Chem. Int. Ed. 2013 52 4410.

Example: ²H in Humites

- In some cases, motion doesn't affect the anisotropic interaction very much.
- ~180° reorientation of O-D groups doesn't affect the ²H lineshape in clinohumite [4Mg₂SiO₄.Mg(OH)₂].
- Motion is still present and, by introducing MAS, the rotor frame axes are now reorienting on a timescale comparable to the motion.
- Arrhenius-type plot of In(linebroadening) against 1/T allows an activation energy of 40 ± 4 kJ mol⁻¹ to be determined.

Phys. Chem. Chem. Phys. 2010 12 2989.

Example: Slow Dynamics

- The EXSY experiment can be used to confirm the exchange of sites on a longer timescale.
- ¹⁷O EXSY of ZrW₂¹⁷O₈ shows all four sites exchange at 57 °C, confirming the presence of a "ratchet" mode of motion rather than a S_N2-like motion, which interconverts only two O types.
- At higher temperatures, all four O signals coalesce in the MAS spectrum, confirming rapid exchange.

Summary

- While anisotropic interactions in solids can confuse and complicate one-dimensional NMR spectra, this information can still be helpful if used correctly.
- Selective introduction of specific interactions by advanced pulse sequences allows us to extract valuable structural information.
- · Solids are rarely ideal crystals!
- Solid-state NMR spectroscopy can almost always provide information to complement crystallographic measurements, since most of the interesting things in life aren't static or repetitive!

Bibliography

- Many examples have been taken from the following reviews and references within
- S.E. Ashbrook, D.M. Dawson and J.M. Griffin, in Local Structural Characterisation, eds D.W. Bruce, D. O'Hare and R.I. Walton (Wiley, Chichester, 2014).
- S.E. Ashbrook and D.M. Dawson Acc. Chem. Res. 2013 46 1964-1974.
- R.F. Moran, D.M. Dawson and S.E. Ashbrook Int. Rev. Phys. Chem. 2017 36 39-115.