

THE UNIVERSITY of EDINBURGH School of Chemistry

The spectrometer is not a black box!

Andrew Hall & Juraj Bella

Magnetisation vectors

THE UNIVERSITY of EDINBURGH School of Chemistry

Νο	With
external	external
field	field

Individual nuclear magnetic moments μ_i

Bulk magnetisation vector \overrightarrow{M}

NMR shopping list
1. Magnet (as big as possíble)

Frequency offset

THE UNIVERSITY of EDINBURGH School of Chemistry

Rotating frame

 $\begin{array}{cccc}
 & & & & \\
 & & & +ve & 0 & -ve \\
 & & & & & \omega = 0 & \omega = -\Omega
\end{array}$

 $\Omega = \omega_0 - \omega_{rot}$

Positive chemical shifts rotate faster. Negative chemical shifts rotate slower.

$$\omega_0 = -\gamma B_0$$

NMR shopping list
1. Magnet (as bíg as possíble)
2. Shíms

NMR signal generation

THE UNIVERSITY of EDINBURGH School of Chemistry

Pulses cause a rotation of the magnetisation vector

NMR shopping list
1. Magnet (as big as possíble)
2. Shíms
з. Probe

NMR shopping list
1. Magnet (as bíg as possíble)
2. Shíms
з. Probe
4. Pulse generator
a. Sígnal generator
b. Amplífier

The NMR signal (FID)

THE UNIVERSITY of EDINBURGH School of Chemistry

'Real' $S_{real} = cos(\Omega t)$

'Imaginary' $S_{imag} = i.sin(\Omega t)$

Receiver gain

NMR shopping list
1. Magnet (as bíg as possíble)
2. Shíms
з. Probe
4. Pulse generator
a. Sígnal generator
b. Amplífier
5. Receiver
a. Amplífier

Digitisation

NMR shopping list
 1. Magnet (as bíg as possíble)
2. Shíms
з. Probe
4. Pulse generator
a. Sígnal generator
b. Amplífier
5. Receíver
a. Amplífier
b. Dígítíser

Fourier transforms

Fourier transforms convert time domain data to frequency domain:

<u>Step 1:</u>

Make a guess at the frequency that the signal is precessing:

<u>Step 2:</u> Multiply the guess signal with the FID

0.5

THE UNIVERSITY of EDINBURGH School of Chemistry https://xkcd.com/26/

<u>Step 3:</u>

Integrate the signal over time

$$S(\Omega) = \int_0^\infty S_{guess}(t) \times FID(t) dt$$

NMR shopping list
1. Magnet (as bíg as possíble)
2. Shíms
з. Probe
4. Pulse generator
a. Sígnal generator
b. Amplífier
5. Receiver
a. Amplífier
b. Dígítíser
c. Computer

The NMR spectrometer

NMR shopping list
1. Magnet (as bíg as possíble)
2. Shíms
3. Probe
4. Pulse generator
a. Sígnal generator
b. Amplífier
5. Receiver
a. Amplífier
b. Dígítíser
c. Computer
6. Gradients
7. Temperature control