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There’s more to NMR
than just protons

Dr Andrew Hall



NMR periodic table @) oo
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Quadrupolar nuclei CD oo

H/D

F
Nuclei with a spin quantum number larger than % are quadrupolar.
D/H SiMe;
Quadrupolar nuclei have an asymmetrical charge distribution.
This causes faster relaxation, resulting in broad peaks. LL

KCharge distribution: \
2H NMR
\ Isotropic Quadrupolar J

f1 (ppm)
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NMR probes usually have two coils, one for 'H (and '°F) and a second that can be tuned to a range of nuclei.
Depending on how the probe is constructed, the coils can be optimized for different nuclei.
Cooling the probe to low temperature (77 or 20 K) can increase the sensitivity.
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NMR periodic table

Most probes only detect
nuclei with y >y,

Ba

Ra

Ti Cr Fe
Zr Mo Ru
Hf w Os
Rf [Db|Sg|Bh|Hs
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Natural abundance 6 s

For many heteronuclei, the NMR-active isotope only makes up a small fraction of all nuclei at natural abundance.
Some elements have multiple NMR-active isotopes.
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Natural abundance 6 s

For many heteronuclei, the NMR-active isotope only makes up a small fraction of all nuclei at natural abundance.
Some elements have multiple NMR-active isotopes.

BH,"
*H NMR C Natural abundance:
10B = 20%, spin-3
1Jutte = 64.9 Hz \HB = 80%, spin-3/2j

1J|-|1|:|E, =27.3 Hz
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https://chem.ch.huji.ac.il/nmr/techniques/1d/row2/b.html
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NMR periodic table

Most probes only detect
nuclei with y >y,

Some nuclei have too low
natural abundance to
detect

Ba

Ra

Ti Cr Fe
Zr Mo Ru
Hf w Os
Rf [Db|Sg|Bh|Hs
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L He
Li | Be B N[O Ne
Most probes only detect Na|Mg s | ci PAr
nuclei with y >y K [calSe| Ti [M|Cr|Mn|Fe [Co| Ni |Cu|zn|Ga|Ge|As |Se] Br | Kr
Rb| Sr| Y | Zr [NB|{Mo|Te | Ru|Rh|Pd|Ag[Cd] In Sb|Te| | | Xe
Some nuclei have too low Cs| Ba Hf [ Ta| W [Re|Os| Ir ['PE] Au[Ha| TI [Pb] Bi [Po| At |[Rn
natural abundance to Fr|Ra Rf |Db|Sg|Bh|Hs|Mt|Ds|Rg|Cn|Nnh| FI [Mc|Lv|Ts|Og
detect
La|Ce| Pr|Nd[Pm|Sm|[Eu|Gd| Tb | Dy [Ho| Er [ Tm]| Yb [Lu
Common heteronuclei Ac|Th|Pa| U |Np|Pu|Am|Cm| Bk | Cf|Es [Fm|Md|No| Lr
include 7Li, 10/11g, 13C, 15N,
19 2771, 29Sj, 31p and 119Sn _
Nuclear spin: . 1/2 3/2 . 712 5

' W W B
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Excitation width G oo s

Standard pulses (typically ~10 ps duration) may not excite all peaks equally for nuclei with wide spectral ranges.
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Excitation width G oo s

Standard pulses (typically ~10 ps duration) may not excite all peaks equally for nuclei with wide spectral ranges.
Other pulses can offer more uniform excitation profiles.

1lB
31P
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Relaxation time CD oo

After the pulse, the NMR signal takes several seconds to recover.
The time taken for the signal to recover is determined by the T, relaxation time constant for the nucleus.
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Relaxation time CD oo

After the pulse, the NMR signal takes several seconds to recover.
The time taken for the signal to recover is determined by the T, relaxation time constant for the nucleus.
The spectrum will only be quantitative if the signal is allowed to fully recover, usually >5x T,.
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Decoupling G scrooi Gremiany ™"

Decoupling uses the second coil to saturate the energy levels of the coupled nucleus, removing peak splitting.
Different decoupling schemes can either enhance signal or enable quantitation.

90°

X

RD

Multiplicity NOEs Quantitation

Continuous 1H decoupler X v X

Inverse-gated 1H dec X X

(RD>= 5-12*T,)
Gated 1y Ldec v/ v/ X

[ NOEs (Nuclear Overhauser Effects) J

SNUG PG NMR course, 2" December 2024 16



THE UNIVERSITY of EDINBURGH
School of Chemistry

Nuclei with a low gyromagnetic ratio (e.g. 1*N or 2°Si) have lower levels of polarization, resulting in weak signals.
Signals can be enhanced by transferring polarization from nearby nuclei with higher gyromagnetic ratio (e.g. *H or 1°F)

29Si INEPT
INEPT

(Insensitive Nuclei Enhanced
by Polarization Transfer)

SO S T

29Gi{1H} inverse-gated decoupling
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Zero filling
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Zero filling gains additional frequency resolution for free, by increasing the number of points available for the Fourier
transform. There is no new information added, but the extra points can help with integrating and fitting peaks.

. . Time (sl]
6 8 10 12

Normal data

—8—FID (real)

Zero filled

—0—FID (real)

Frequency domain spectrum
60 -

50 1

40 ]

s(Q)

20

10 4

0 10 20 30 40 50
Frequency (Hz)

Frequency domain spectrum

0 10 20 30 40 50
Frequency (Hz)

SNUG PG NMR course, 2" December 2024 19



I THE UNIVERSITY of EDINBURGH
Background signals CD oo

Fast decaying signals from materials in the probe/glass result in broad background signals.

Background signal

/ from probe

W

L

e 0004 0,008 0012 0,016 0.020 0.024 0,025 0.032
130 110 90 70 50 30 1f(1] (pp;nl)O -30 -50 -70 -90 -110 -130 Time (Sec)

SNUG PG NMR course, 2" December 2024 20



I THE UNIVERSITY of EDINBURGH
Background signals CD oo

Fast decaying signals from materials in the probe/glass result in broad background signals.
Removing the first few points from the FID and then using backward linear prediction can restore a flat baseline.
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Further information

Books & online resources: H]
* High-Resolution NMR Techniques in Organic NLi ;e
a|Mg

Chemistry, Tim Claridge

K Ca. Ti Cr Fe
* http://u-of-o-nmr-facility.blogspot.com Rol srl v |z BB vio Bl Ru
 Mechanistic Analysis by NMR Spectroscopy: a Ba| | Hf|Ta] W [IR€] Os
Rf |Db|Sg|Bh
e Nd

Users Guide, Prog. Nucl. Magn. Reson. Spectrosc., Ra Hs

129, 28-106, 2022
C Sm{Eu| Gd | Tb | Dy Er|Tm| Yb

NMR periodic table:

https://imserc.northwestern.edu/guide/eNMR/ch

B Nuclear spin: 1/2
em/NMRnuclei.html .
1

Speak to your local NMR staff!
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