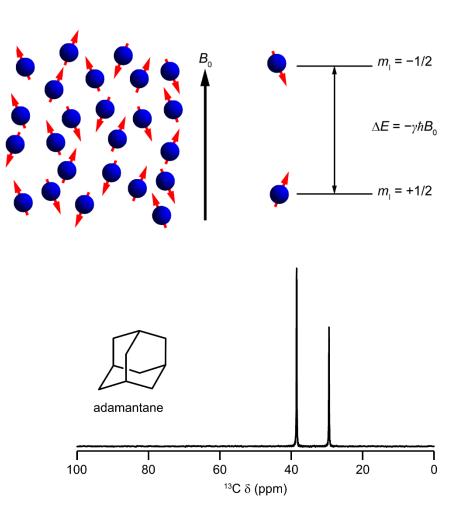
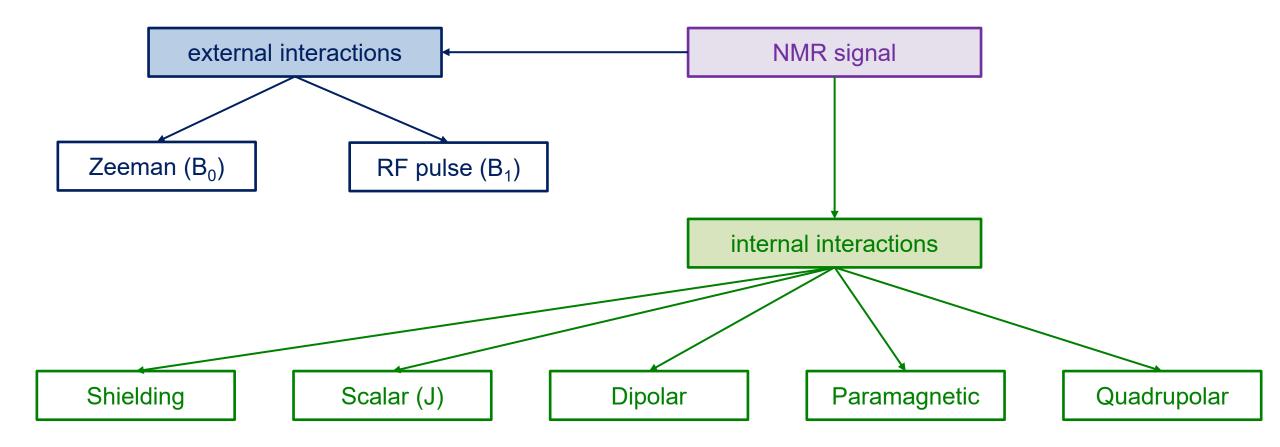
Introduction to Solid-State NMR Spectroscopy

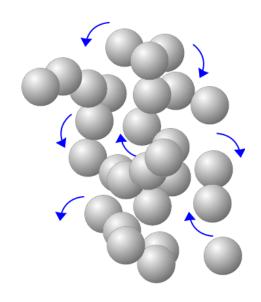

Daniel Dawson dmd7@st-andrews.ac.uk

University of St Andrews



Quick Recap

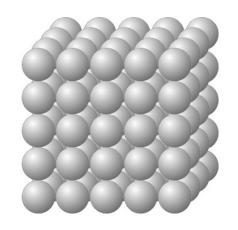
- NMR looks at nuclei in theory this gives us a signal at the Larmor frequency (interaction between nucleus and external magnetic field)
- Signals are moved from the Larmor frequency by interactions between nuclei and local magnetic fields
 - interaction with other nuclei: scalar (J) coupling
 - interaction with filled MOs: chemical shift
 - other things to consider like paramagnetic and relativistic shifts in some cases
- All of this is true in liquids and solids


Interactions in NMR

 $H_{NMR} = H_Z + H_{rf} + H_{CS} + H_D + H_J + H_P + H_Q$

Solids vs Liquids/Solutions

Liquids

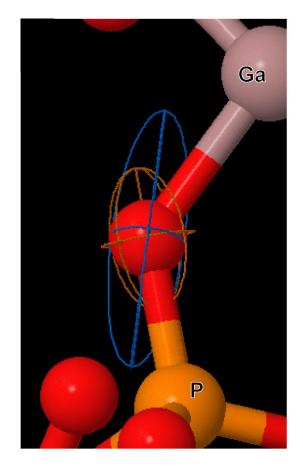


 Rapid isotropic tumbling

•

- On the "NMR timescale" a molecule will sample all possible orientations many times
- NMR interactions averaged to their isotropic values

Solids

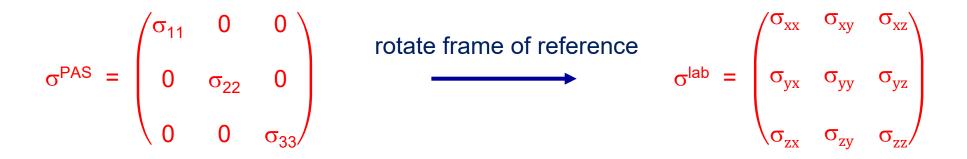

Limited/no motion

•

- NMR spectrum looks at a frozen snapshot of crystallite orientations
- Full anisotropic interactions must be considered

 The word anisotropy can be broken down to three Greek roots an (not) + iso (the same) + tropos (related to direction)
 = not the same in all directions

- When we describe a chemical shift in solution we report δ in ppm
 - this is the isotropic part of the chemical shift, δ_{iso}
- When we describe a chemical shift in a solid, we need to use three numbers, corresponding to the magnitude of the interaction along the three principal axes, δ_{11} , δ_{22} and δ_{33}
- Since these are the same interaction, $\delta_{iso} = (\delta_{11} + \delta_{22} + \delta_{33})/3$


- In addition to δ_{iso} we must consider the size of the anisotropy and its asymmetry (deviation from axial symmetry)
- Various conventions exist but here we'll order the components as $|\delta_{33} - \delta_{iso}| \ge |\delta_{11} - \delta_{iso}| \ge |\delta_{22} - \delta_{iso}|$
- The magnitude is given by the anisotropy parameter

$$\Delta \delta = \delta_{33} - \delta_{\rm iso}$$

• The asymmetry is given by

$$\eta = (\delta_{22} - \delta_{11}) / \Delta \delta \qquad 0 < \eta < 1$$

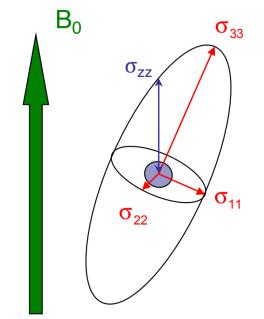
- In the PAS frame of the interaction, the interaction for each crystallite looks the same
- We have to rotate from the PAS to the lab frame

- You'll notice I've swapped from δ to σ (magnetic shielding) these are related by $\delta = \sigma_{ref} \sigma$, which we get round experimentally by referencing our spectrum to a standard.
- Working with σ for the next slide makes the maths a lot cleaner!

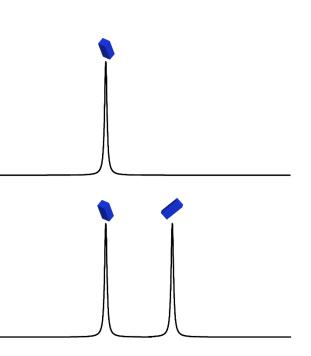
- Interactions in NMR are of the form $H_A = I.A.X$
 - I is a spin operator
 - A is the interaction tensor
 - X is another spin, magnetic field, etc.

$$\mathbf{H}_{CS} = \begin{pmatrix} \mathbf{I}_{x} & \mathbf{I}_{y} & \mathbf{I}_{z} \end{pmatrix} \begin{pmatrix} \boldsymbol{\sigma}_{xx} & \boldsymbol{\sigma}_{xy} & \boldsymbol{\sigma}_{xz} \\ \boldsymbol{\sigma}_{yx} & \boldsymbol{\sigma}_{yy} & \boldsymbol{\sigma}_{yz} \\ \boldsymbol{\sigma}_{zx} & \boldsymbol{\sigma}_{zy} & \boldsymbol{\sigma}_{zz} \end{pmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{B}_{0} \end{pmatrix}$$

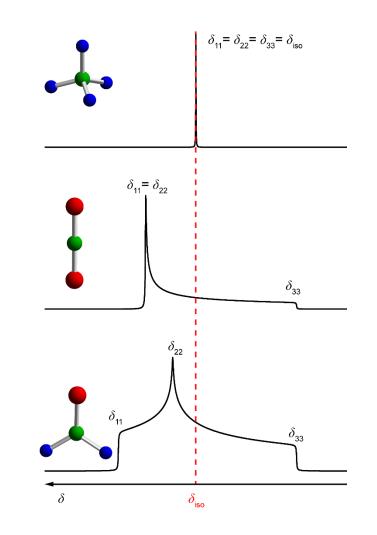
- This looks hideous but simplifies to $H_{CS} = I_x \sigma_{xx} \gamma B_0 + I_y \sigma_{yy} \gamma B_0 + I_z \sigma_{zz} \gamma B_0$
- In the secular approximation this simplifies even further to $H_{cs} = I_z \sigma_{zz} \gamma B_0$


- For any given crystallite, the amount of shielding along the magnetic z axis (σ_{zz}) is given by

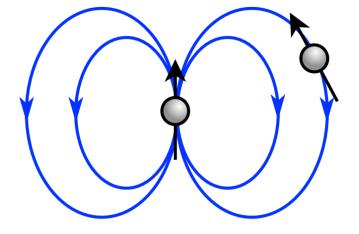
$$\sigma_{zz} = \sigma_{iso} + \frac{\Delta\delta}{2} \Big[(3\cos^2\theta - 1) + \eta (\sin^2\theta \cos 2\phi) \Big]$$


isotropic

anisotropic


• Each crystallite orientation will give a different peak position for nuclei in the same environment

- Each crystallite orientation will give a different peak position for nuclei in the same environment
- In a powder, the statistical distribution of crystallites, combined with singularities at δ_{11} , δ_{22} and δ_{33} leads to typical powder pattern lineshapes



- Each crystallite orientation will give a different peak position for nuclei in the same environment
- In a powder, the statistical distribution of crystallites, combined with singularities at δ_{11} , δ_{22} and δ_{33} leads to typical powder pattern lineshapes
- These lineshapes can provide information on point symmetry at the nucleus
 - Axial symmetry: $\eta = 0$
 - Spherical symmetry (T_d and above) : $\Delta \delta$ = 0
- Problematic when there are more than ~2 lineshapes in a spectrum since lines tend to overlap

- "NMR active nuclei act like tiny magnets"...
- Dipolar interaction between two spins, I and S

$$H_{D} = \begin{pmatrix} I_{x} & I_{y} & I_{z} \end{pmatrix} \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix} \begin{pmatrix} S_{x} \\ S_{y} \\ S_{z} \end{pmatrix}$$

 Unlike σ, which comes from molecular orbitals of arbitrary shape, D comes from a direct interaction between two point dipoles

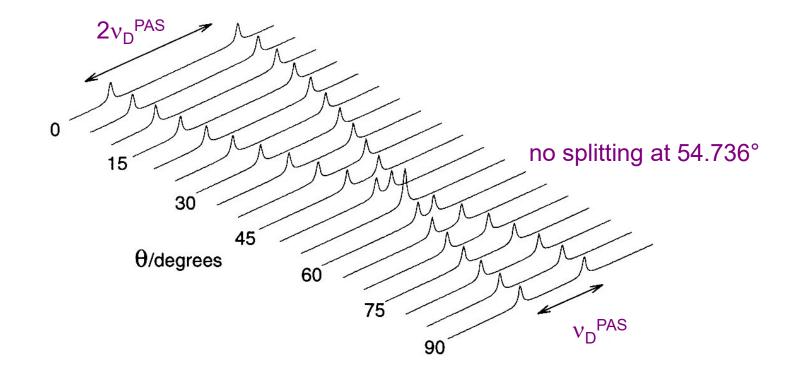
$$-\eta_D = 0$$

$$- D_{iso} = 0$$

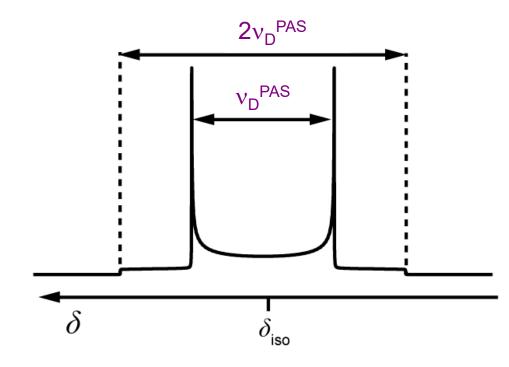
• For heteronuclear coupling $(I \neq S)$

$$\mathbf{H}_{\mathsf{D}} = -\frac{\mu}{4\pi} \frac{\gamma_{\mathsf{I}} \gamma_{\mathsf{S}} \hbar}{\mathbf{r}_{\mathsf{IS}}^{3}} [2\mathbf{I}_{\mathsf{z}} \mathbf{S}_{\mathsf{z}}] \frac{1}{2} (3\cos^{2}\theta - 1)$$

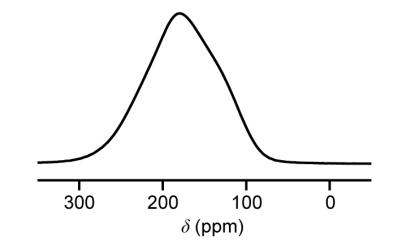
• For homonuclear coupling (**I** = **S**)


$$\mathbf{H}_{\mathsf{D}} = -\frac{\mu}{4\pi} \frac{\gamma_{\mathsf{I}} \gamma_{\mathsf{S}} \hbar}{\mathsf{r}_{\mathsf{IS}}^3} [\mathbf{3}\mathsf{I}_{\mathsf{z}} \mathbf{S}_{\mathsf{z}} - \mathbf{I} \cdot \mathbf{S}] \frac{1}{2} (3\cos^2 \theta - 1)$$

 θ


 B_{\circ}

• The dipolar coupling constant, v_D depends only on the spin pair (γ_I , γ_S) and the internuclear distance

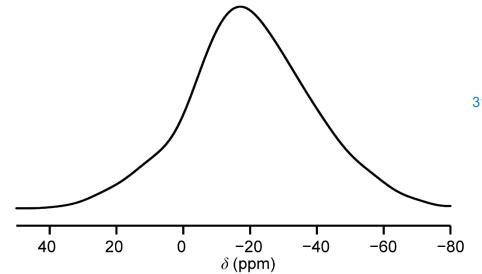

• The dipolar interaction leads to a *splitting* rather than a shift

• The powder pattern lineshape is a Pake doublet

- The reality is that you very rarely see an isolated spin pair!
- Consider your favourite molecule and how many internal C-¹H distances it contains...
- Now imagine that molecule packed into a solid with millions of other molecules, all containing more ¹H...
- The result is a Gaussian-like broadening of the Pake doublet

¹³C NMR spectrum of solid gly 99% enriched on the carboxylate

The Scalar Coupling

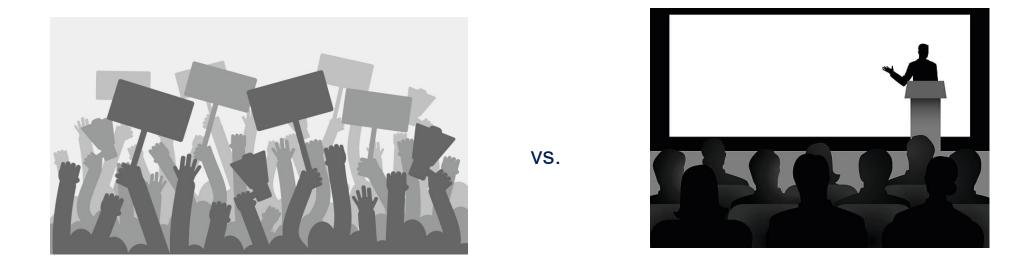

- The J tensor is like D but the interaction is mediated by electrons in arbitrarily shaped MOs
- This leads to an isotropic splitting (which we see in solution) and an anisotropic broadening analogous to the dipolar interaction
- We tend to ignore J in solids because it's tiny (¹J_{CH} ≈ 130 Hz) compared to D (D_{CH} ~30 kHz for a 1 Å separation)
- Just because we can't see it doesn't mean it doesn't exist, and we can still use it in magnetisation transfer experiments

Summary So Far

- In solids we expect resonances to be shifted, split and broadened by a variety of interactions
- Chemical shift information about atoms within a few bonds
- Chemical shift anisotropy information about 3D arrangement of nearby atoms
- Dipolar coupling information about atoms that are close in space
- J coupling information about atoms within a few bonds

Summary So Far

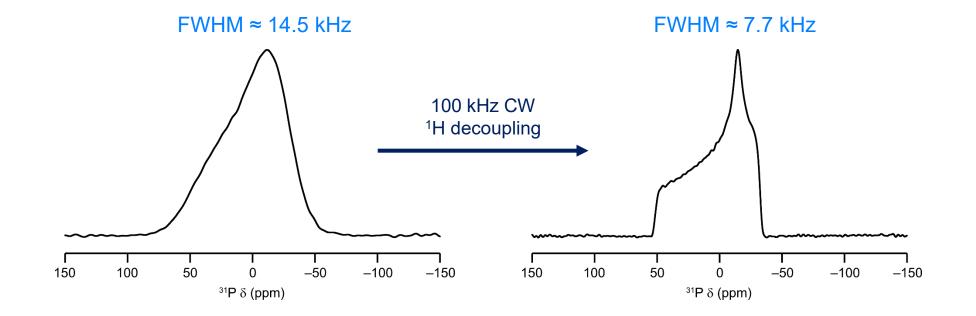
• So when a solid-state NMR spectrum looks like this...



³¹P NMR spectrum of aluminophosphate AIPO-34 containing three P sites

• It's because there's too much information!

High-Resolution Solid-State NMR

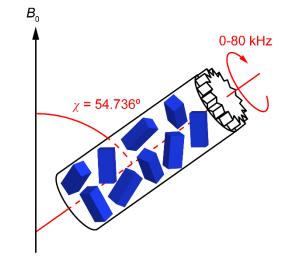

• So how come solution-state NMR is so much more useful when there's so much less information in the spectra?

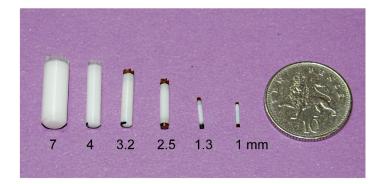
• For solid-state NMR spectroscopy to be informative, we need to *remove* some information

Decoupling

- We can get rid of spin-spin couplings using decoupling, which works exactly the same as in solution (but is generally much higher power for solids)
- Decoupling the ¹H-³¹P spin-spin interactions in (NH₄)₂HPO₄ narrows the line and allows us to see the classic CSA-broadened lineshape

Beyond Static

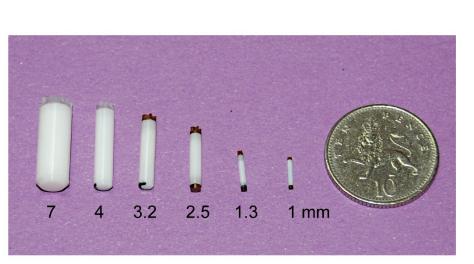

- The internal interaction Hamiltonians all have two distinct parts
- A spatial part (how the interaction varies with orientation with respect to B_0)
- A spin part (angular momentum terms parallel to B_0)

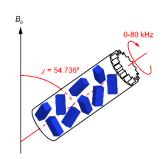

$$H_{CS} = \sigma_{iso} + \frac{\Delta\delta}{2} \Big[(3\cos^2\theta - 1) + \eta (\sin^2\theta \cos 2\phi) \Big] I_z \gamma B_0$$
$$H_D = -\frac{\mu}{4\pi} \frac{\gamma_1 \gamma_S \hbar}{r_{iS}^3} \Big[2I_z S_z \Big] \frac{1}{2} \Big(3\cos^2\theta - 1 \Big)$$

- Decoupling averages interactions in "spin space" but needs two interacting spins
 - you could decouple I_z from B_0 by removing the sample from the magnet...
- How can we average in real space?

Beyond Static

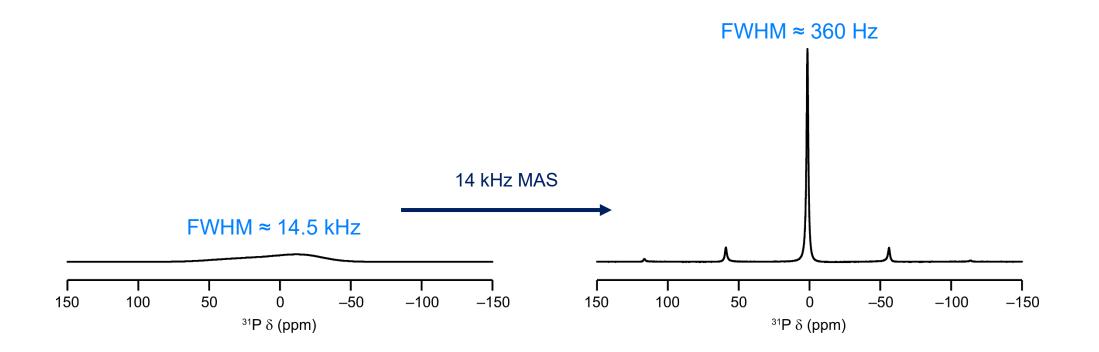
- Orientation dependence of many interactions is proportional to
 - $(3 \cos^2 \theta 1)/2$
- This is zero at the "magic" angle of 54.736°
- Can't align every single one of millions of crystallites in a powder at this angle, but we can instead rotate the whole sample rapidly about an axis inclined at the magic angle
- This approach is called Magic Angle Spinning
 - If the rotation rate is fast enough, the crystallites appear to have an average orientation of 54.736°

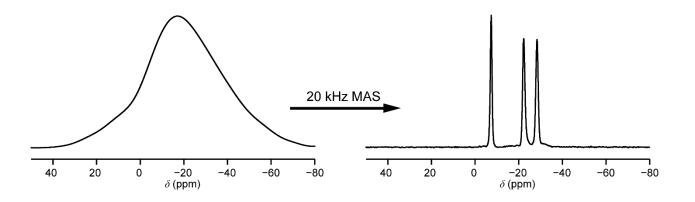




Beyond Static

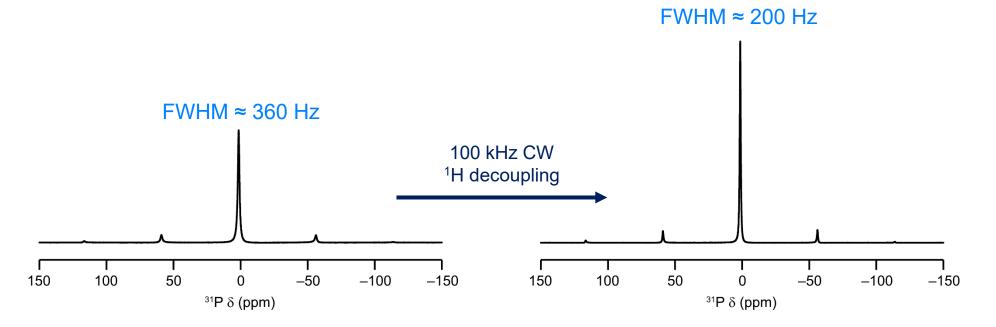
- Nowadays achievable MAS rates can reach all the way up to >100 kHz
- The trade off between cost, availability, sample volume, frictional heating and sensitivity means that top speed isn't always the best choice


diameter / mm		top MAS rate / kHz	sample mass / mg			
	7	7	500			
	4	15	130			
	3.2	22	80			
	1.9	42	25			
	1.3	67	5			
	1	80	2			
	0.7	111	~1			


The Magic of MAS

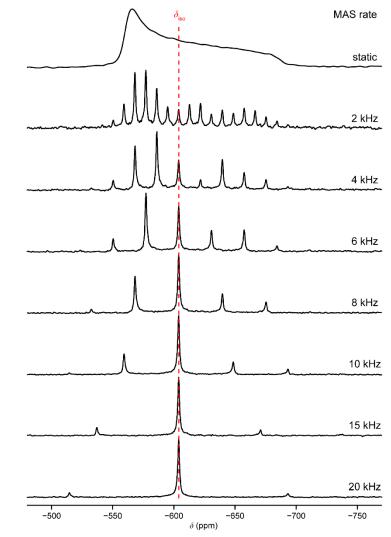
• Going back to our sample of $(NH_4)_2HPO_4$, MAS allows us to remove the CSA and the dipolar broadening, and increases the peak-height-to-noise sensitivity dramatically

The Magic of MAS


- MAS is essential when more than one signal is present
- Three sites clearly resolved in AIPO-34 with MAS

• Is a linewidth of hundreds of Hz really the best we can do for solids though?

MAS + Decoupling


• We can average in spin space at the same time as in real space by combining MAS with decoupling to remove large dipolar couplings and smaller CSAs at moderate MAS rates

 Various inhomogeneities in solids (different magnetic environments in bulk/surface, potential defects, stacking faults, *etc*.) and practical effects (we don't shim or set the magic angle for every experiment) contribute to residual linewidth

Spinning Sidebands

- How fast is "sufficiently fast" MAS?
- Depends what you want to see usually taken to be
 - MAS rate > magnitude of interaction to average
- At slower MAS rates the spectrum will be separated into a series of spinning sidebands whose position varies with the MAS rate
 - Useful for identifying SSBs
- At very slow rates the intensities of the SSBs map out the static lineshape
 - May be useful for measuring CSAs of multiple sites

¹¹⁹Sn NMR spectra of SnO₂

Many nuclei in the periodic table have spin > 1/2

Th

Thorium

32 038

1 H				_													2 He
Hydrogen 1,00794		l = 1/2															Helium 4.003
3	4												6	7	8	9	10
Li	Be		Quadrupolar										F	Ne			
6.941	Beryllium 9.012182		Boron Carbon Nutogen Oxygen Fluorine 10.811 12.017 14.00674 15.9994 18.9984032 13 14 15 16 17											Neon 20.1797			
11	12												14	15	16	17	18
Na	Mg Magnesium												Silicon	P Phosphorus	S Sulfur	Cl	Ar Argon
22.989770	24.3050												28.0855	30.973761	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca Calcium	Sc Scandium	Ti	V	Cr	Mn	Fe	Co	Ni Nickel	Cu	Zn	Gallium	Ge	As	Se Selenium	Br	Kr
Potassium 39.0983	40.078	44.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938049	55.845	58.933200	58.6934	Copper 63.546	65.39	69.723	Germanium 72.61	Arsenic 74.92160	78.96	Bromine 79.904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Rubidium 85.4678	Strontium	Yttrium 88,90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95,94	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
	87.62	00.90305		72.70000	10.14	(98)	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.29
55	87.62 56	57	72	73	74	75	101.07 76	102.90550 77	106.42 78	107.8682 79	80	81	118.710 82	121.760 83			131.29 86
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	127.60 84 Po	126.90447 85 At	86 Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	127.60 84	126.90447 85	86
55 Cs	56 Ba Barium	57 La	72 Hf	73 Ta Tantalum	74 W	75 Re	76 Os Osmium	77 Ir Iridium	78 Pt	79 Au	80 Hg	81 Tl Thallium	82 Pb Lead	83 Bi	127.60 84 Po Polonium	126.90447 85 At Astatine	86 Rn Radon
55 Cs 132.90545 87 Fr	56 Ba ^{Barium} 137.327 88 Ra	57 La Lanthanum 138.9055 89 Ac	72 Hf Hafnium 178.49 104 Rf	73 Ta ^{Tantalum} 180.9479 105 Db	74 W ^{Tungsten} 183.84 106 Sg	75 Re ^{Rhenium} 186.207 107 Bh	76 Os ^{Osmium} 190.23 108 Hs	77 Ir ^{Iridium} 192.217 109 Mt	78 Pt 195.078	79 Au _{Gold} 196.96655	80 Hg Mercury 200.59	81 Tl 204.3833	82 Pb Lead 207.2	83 Bi	127.60 84 Po Polonium	126.90447 85 At Astatine	86 Rn Radon
55 Cs ^{Cesium} 132.90545 87	56 Ba ^{Barium} 137.327 88	57 La Lanthanum 138.9055 89	72 Hf ^{Hafnium} 178.49 104	73 Ta ^{Tantalum} 180.9479 105	74 W ^{Tungsten} 183.84 106	75 Re Rhenium 186.207 107	76 Os ^{Osmium} 190.23 108	77 Ir ^{Iridium} 192.217 109	78 Pt 195.078	79 Au _{Gold} 196.96655	80 Hg Mercury 200.59	81 Tl 204.3833	82 Pb Lead 207.2	83 Bi	127.60 84 Po Polonium	126.90447 85 At Astatine	86 Rn Radon
55 Cs Cesium 132.90545 87 Francium	56 Ba Barium 137.327 88 Ra Radium	57 La Lanthanum 138.9055 89 Ac Actinium	72 Hf Hafnium 178.49 104 Rf Rutherfordium	73 Ta Tantalum 180.9479 105 Db Dubnium (262)	74 W Tungsten 183.84 106 Seg Seaborgium (263)	75 Re Rhenium 186.207 107 Bh Bohrium	76 Os Osmium 190.23 108 Hassium (265)	77 Ir 1rdium 192.217 109 Mt Meitnerium (266)	78 Pt Platinum 195.078 110 (269)	79 Au ^{Gold} 196.96655 111	80 Hg Mercury 200,59 112 (277)	81 Tl 204.3833	82 Pb Lead 207.2 114	83 Bi ^{Bismuth} 208.98038	127.60 84 Po Polonium (209)	126.90447 85 At Astatine (210)	86 Rn Radon (222)
55 Cs Cesium 132.90545 87 Francium	56 Ba Barium 137.327 88 Ra Radium	57 La Lanthanum 138.9055 89 Ac Actinium	72 Hf Hafnium 178.49 104 Rf Rutherfordium	73 Ta Tantalum 180.9479 105 Db Dubnium (262) 58	74 W Tungsten 183.84 106 Sg Seaborgium (263) 59	75 Re Rhenium 186,207 107 Bh Bohrium (262) 60	76 Os ^{Osmium} 190.23 108 Hs Hassium	77 Ir Irdium 192.217 109 Mt Meitherium (266) 62	78 Pt ^{Platinum} 195.078 110 (269) 63	79 Au ^{Gold} 196,96655 111 (272) 64	80 Hg 200.59 112 (277) 65	81 Tl ^{Thallium} 204.3833 113 66	82 Pb Lead 207.2 114	83 Bi ^{Bismuth} 208.98038	127.60 84 Po Polonium (209) 69	126.90447 85 At Astaine (210) 70	86 Rn Radon
55 Cs Cesium 132.90545 87 Francium	56 Ba Barium 137.327 88 Ra Radium	57 La Lanthanum 138.9055 89 Ac Actinium	72 Hf Hafnium 178.49 104 Rf Rutherfordium	73 Ta Tantalum 180,9479 105 Db Dubnium (262) 58 Ce	74 W Tungsten 183.84 106 Sg Seaborgium (263) 59 Pr	75 Re Rhenium 186,207 107 Bh Bohrium (262) 60 Nd	76 Os ^{Osmium} 190.23 108 Hs ^{Hassium} (265) 61 Pm	77 Ir Irdium 192.217 109 Mt Meitnerium (266) 62 Sm	78 Pt Platinum 195.078 110 (269) 63 Eu	79 Au _{Gold} 196,96655 111 (272) 64 Gd	80 Hg 200.59 112 (277) 65 Tb	81 Tl Thallium 204.3833 113 66 Dy	82 Pb Lead 207.2 114 67 Ho	83 Bi ^{Bismuth} 208.98038 68 Er	127.60 84 Po Polonium (209) 69 Tm	126.90447 85 At Astatine (210) 70 Yb	86 Rn (222) 71 Lu
55 Cs Cesium 132.90545 87 Francium	56 Ba Barium 137.327 88 Ra Radium	57 La Lanthanum 138.9055 89 Ac Actinium	72 Hf Hafnium 178.49 104 Rf Rutherfordium	73 Ta Tantalum 180.9479 105 Db Dubnium (262) 58	74 W Tungsten 183.84 106 Sg Seaborgium (263) 59	75 Re Rhenium 186,207 107 Bh Bohrium (262) 60	76 Os ^{Osmium} 190.23 108 Hassium (265) 61	77 Ir Irdium 192.217 109 Mt Meitherium (266) 62	78 Pt ^{Platinum} 195.078 110 (269) 63	79 Au ^{Gold} 196,96655 111 (272) 64	80 Hg 200.59 112 (277) 65	81 Tl ^{Thallium} 204.3833 113 66	82 Pb Lead 207.2 114	83 Bi ^{Bismuth} 208.98038	127.60 84 Po Polonium (209) 69	126.90447 85 At Astaine (210) 70	86 Rn (222) 71

Cm

(247)

Bk Berkelium

(247)

Cf

Californium

(251)

Es

Einsteinium

(252)

Fm

Fermium

(257)

No

Nobelium

(259)

Lr

Lawrencium

(262)

Md

Mendeleviun

(258)

Np

Pu

Plutonium

(244)

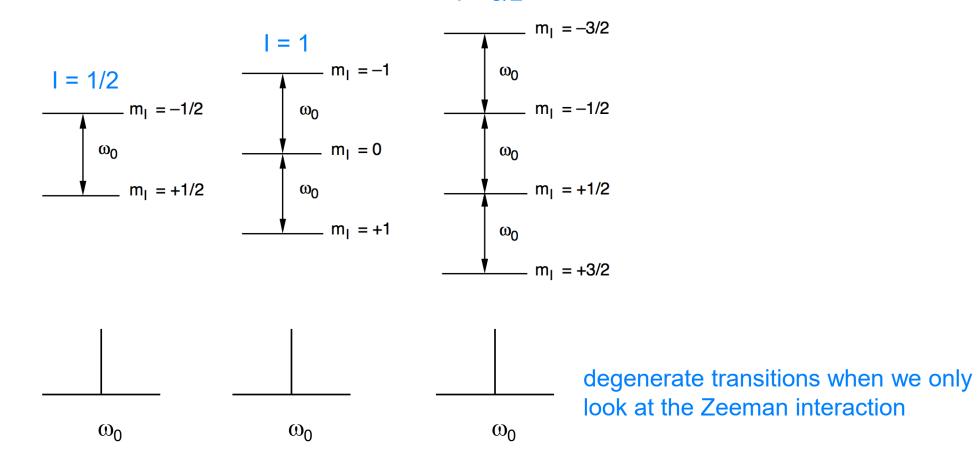
Am

Americium

(243)

U

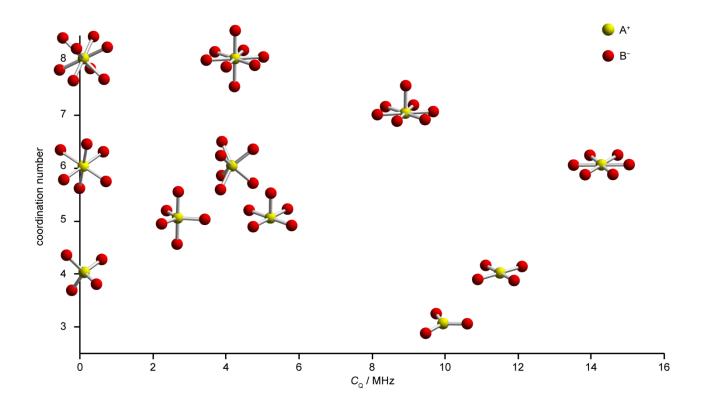
Uranium


Pa

 Nuclei with I > 1/2 have a non-spherical charge distribution at the nucleus giving rise to a nuclear electric quadrupole moment, eQ

• If an Electric Field Gradient is present at the nucleus (*i.e.* if symmetry is less that spherical) then this will interact with the quadrupole moment

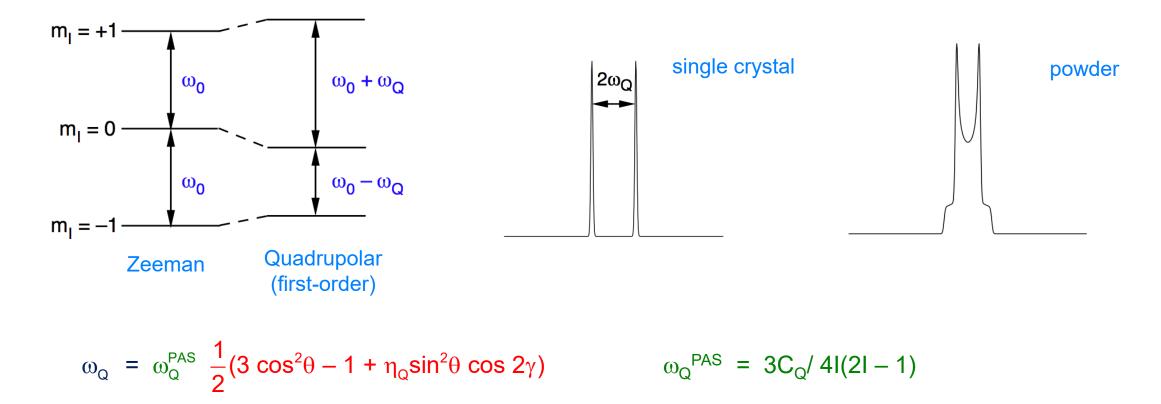
• Quadrupolar nuclei have multiple Zeeman states


| = 3/2

The quadrupolar Hamiltonian involves the spin interacting with itself via the EFG tensor, V

$$H_{Q} = \frac{eQ}{2l(2l-1)\hbar} \mathbf{I} \cdot \mathbf{V} \cdot \mathbf{I} = \frac{eQ}{2l(2l-1)\hbar} \begin{pmatrix} I_{x} & I_{y} & I_{z} \end{pmatrix} \begin{pmatrix} V_{xx} & V_{xy} & V_{xz} \\ V_{yx} & V_{yy} & V_{yz} \\ V_{zx} & V_{zy} & V_{zz} \end{pmatrix} \begin{pmatrix} I_{x} \\ I_{y} \\ I_{z} \end{pmatrix}$$

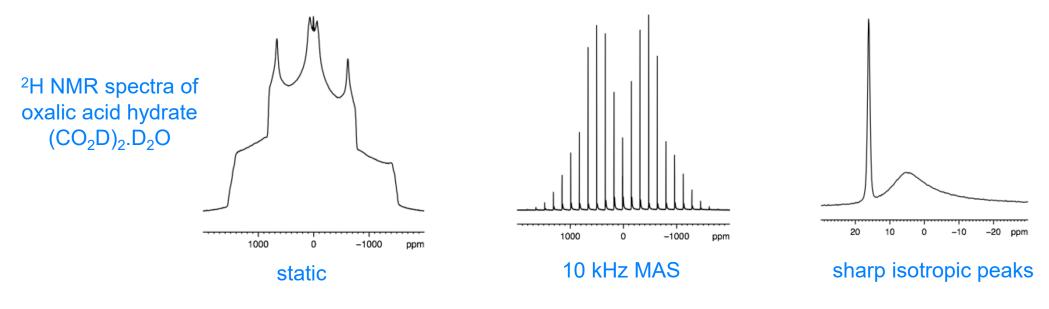
- In the PAS, **V** is diagonal $-|V_{ZZ}| \ge |V_{XX}| \ge |V_{YY}|$ $\begin{pmatrix}
 V_{XX} & 0 & 0 \\
 0 & V_{YY} & 0 \\
 0 & 0 & V_{ZZ}
 \end{pmatrix}$
- The magnitude of the interation is given by the quadrupolar coupling constant $C_0 = eQV_{77}/h$
- The asymmetry, or "shape" parameter is defined similarly to the CSA $-\eta_Q = (V_{YY} V_{XX})/V_{ZZ}$


- The EFG is caused by charge distribution (*i.e.*, where atoms, electrons and ions are nearby)
- Large interaction (~MHz scale) so sensitive to long-range effects but usually dominated by the first coordination sphere

This example uses ²³Na and O^{2–}, interactions can be much larger or smaller depending on eQ

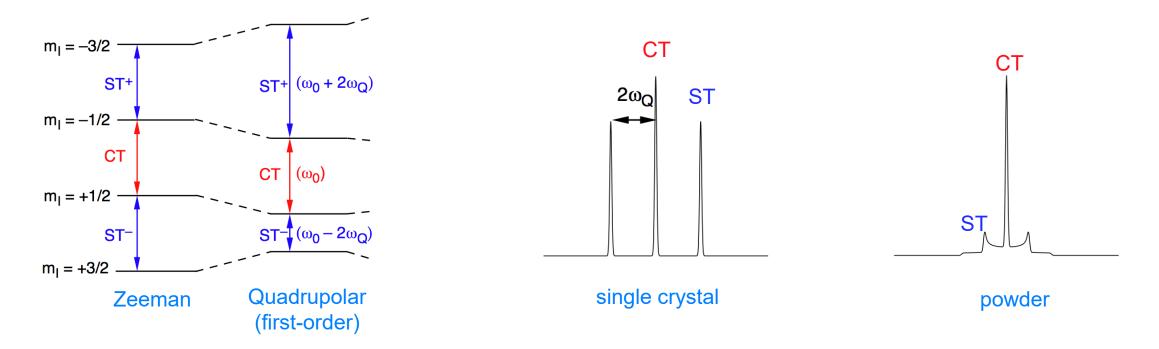
 $C_Q = 0$ for high symmetry

• For spin I = 1 the quadrupolar interaction lifts the degeneracies of the two transitions

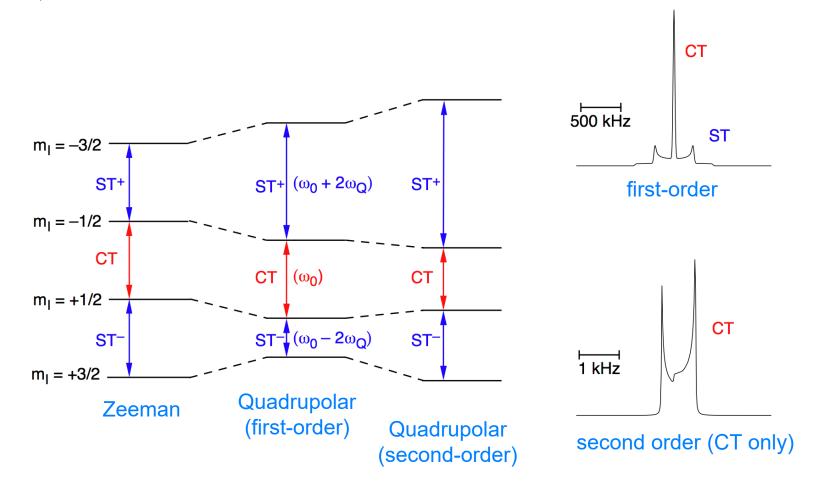


• Again we have a spin-dependent part and an orientation-dependent part

• Again we have a spin-dependent part and an orientation-dependent part


$$\omega_{Q} = \omega_{Q}^{PAS} \frac{1}{2} (3\cos^{2}\theta - 1 + \eta_{Q}\sin^{2}\theta \cos 2\gamma) \qquad \qquad \omega_{Q}^{PAS} = 3C_{Q}/4I(2I - 1)$$

 In theory we can remove this with MAS but in practice C_Q is hundreds of kHz for ²H and ⁶Li, MHz for ¹⁴N, and there aren't any other integer spin quadrupolar nuclei worth looking at*


*the complete list is I = 1: ²H, ⁶Li, ¹⁴N; I = 3: ¹⁰B; I = 5: ¹³⁸La; I = 6: ⁵⁰V; I = 7: ¹⁷⁶Lu

• For spin I = 3/2 the quadrupolar interaction lifts the degeneracies of the three transitions

• With a small C_Q the CT remains sharp and the STs are broadened into a Pake doublet

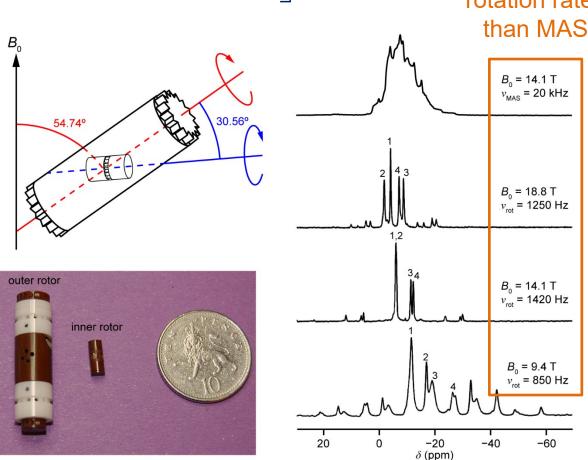
• For larger C_Q (more than a few hundred kHz) we must consider a second order perturbation

• The second-order perturbation is

$$\omega = \frac{\left(\omega_{Q}^{PAS}\right)^{2}}{\omega_{0}} \left[A + B d_{00}^{2}\left(\theta\right) + C d_{00}^{4}\left(\theta\right)\right]$$

- The spin space term is field dependent (1/B₀)
- There is now an isotropic quadrupolar shift term
- The second-rank anisotropic term can be removed by MAS
- The fourth rank anisotropic term has more complicated orientation dependence

 $d_{00}^{2}(\theta) = 1/2 (3 \cos^{2}\theta - 1)$


 $d_{00}^{4}(\theta) = 1/8 (35 \cos^{4} \theta - 30 \cos^{2} \theta + 3)$

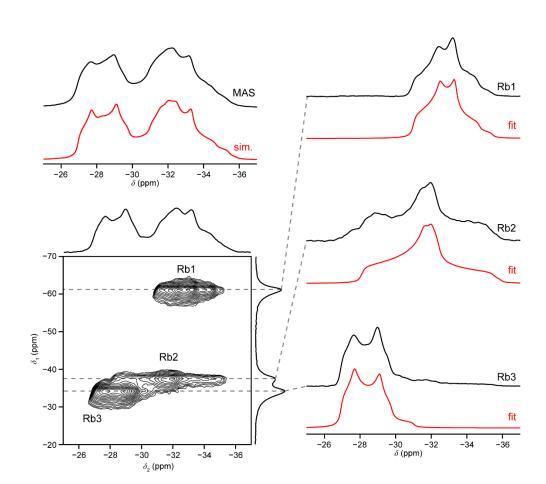
• With MAS the fourth-rank anisotropic term is reduced to about 0.39

High-Resolution Quadrupolar NMR

$$\omega = \frac{\left(\omega_{Q}^{PAS}\right)^{2}}{\omega_{0}} \left[A + B d_{00}^{2}(\theta) + C d_{00}^{4}(\theta)\right] \qquad \text{much slower rotation rates}$$

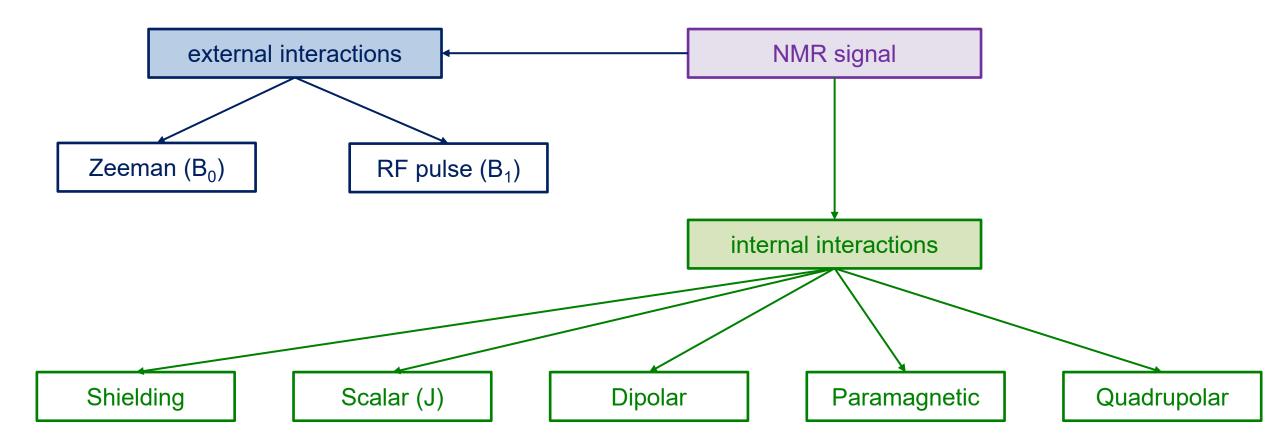
- Averaging in real space would require spinning round two angles simultaneously, 54.736° and 30.56° or 70.12°
- This sounds insane but DOuble Rotation NMR was the only answer for many years...
- Used multiple-field data to separate δ_{iso} and δ_{Q}

High-Resolution Quadrupolar NMR


$$\omega = \frac{\left(\omega_{Q}^{PAS}\right)^{2}}{\omega_{0}} \left[A + B d_{00}^{2}\left(\theta\right) + C d_{00}^{4}\left(\theta\right)\right]$$

- Averaging in spin space requires a two-dimensional Multiple Quantum (MQ) MAS or Satellite Transition (ST) MAS experiment
- MQMAS correlates the CT with the symmetric $m_1 = n/2 \leftrightarrow m_1 = -n/2$ transition (typically n = 3). Since $\Delta m_1 \neq 1$, this transition is forbidden and the experiment is very insensitive
- STMAS correlates the CT with one of the STs m_l = ±n/2 ↔ m_l = ±(n+1)/2 (typically n = 1). The ST is allowed but very broad so the magic angle must be perfectly set and the spinning must be perfectly stable

High-Resolution Quadrupolar NMR


$$\omega = \frac{\left(\omega_{Q}^{PAS}\right)^{2}}{\omega_{0}} \left[A + B d_{00}^{2}\left(\theta\right) + C d_{00}^{4}\left(\theta\right)\right]$$

- Both experiments exploit the fact that A, B and C are different for different transitions
- After appropriate processing, the 2D spectrum contains ridges parallel to δ_2
- The projection onto δ_1 is the isotropic spectrum
- The ridges are MAS lineshapes for each separate signal

⁸⁷Rb NMR of RbNO₃

Summary: Interactions

 $H_{NMR} = H_Z + H_{rf} + H_{CS} + H_D + H_J + H_P + H_Q$

Summary: Interactions

- Interactions in NMR have components in spin space and real space
- Decoupling in spin space works just like in solution
 - removes D and J
 - no effect on chemical shift or quadrupolar interactions
- MAS removes or reduces anisotropic terms with $(3\cos^2\theta 1)/2$ orientation dependence
 - removes D, J anisotropy, chemical shift anisotropy, 1st order quadrupolar
 - reduces 2nd order quadrupolar
 - leaves isotropic chemical and quadrupolar shifts, J splitting
- Quadrupolar nuclei are more complicated and for truly isotropic spectra you need MQMAS (or STMAS or DOR)

Where can I do Solid-State NMR?

- 300 MHz Edinburgh (automated sample changer for 4 mm HX probe with X detect only)
- 400 MHz Heriot Watt (4 mm HRMAS probe)
- 400 MHz St Andrews (7-1.3 mm probes, low-γ, HFX and HFXY capabilities)
- 600 MHz St Andrews (4-1.3 mm probes, low- γ , HX, FX and HXY capabilities)
- 800 MHz SHF lab at Edinburgh (3.2-1.3 mm probes, low-γ, HX, FX and HXY capabilities)
- 850-1200 MHz NRF at Warwick (7-0.7 mm probes, whole range of specialist capabilities, free access and conference bursaries available if you present results from the NRF)